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Abstract. The problem of electrostatic potential distribution in superconductors is studied based on the
microscopic theory of superconductors. Local chemical potential of the superconductor is introduced, and
an approximation is made to BG theory, which is similar to the Thomas-Fermi (TF) method used in
quantum mechanics. The electrostatic potential and charge distribution around an isolated vortex in type-
II superconductors is discussed within the approximation. A correction to GL theory considering the
electrostatic potential distribution is suggested.

PACS. 74.20.Fg BCS theory and its development – 74.20.De Phenomenological theories (two-fluid,
Ginzburg-Landau, etc.) – 74.25.Jb Electronic structure

1 Introduction

It was predicted a long time ago by London [1] that an
electric field would occur in superconductors where the
distribution of superconducting current is inhomogeneous,
which is similar to the Bernoulli effect in fluid mechan-
ics. Here the electrostatic potential is to compensate the
difference of chemical potential of charge carriers caused
by the different kinetic energy of superconducting charge
carriers in different parts of the superconductor having
different current density, so that the chemical potential of
the whole system would be identical [2,3].

After the discovery of high temperature superconduc-
tor, the problem of electrostatic potential distribution in
superconductors has been discussed in many papers [4,5].
Khomskii and Freimuth [6] discussed the problem of an
isolated vortex carrying charge, emphasizing that the
chemical potential near the core is higher than that far
away from the vortex. Koláček, Lipavský and Brandt [7]
discussed the same problem. They emphasized that in a
superconductor where the distribution of order parameter
is inhomogeneous, the density of both normal and super-
conducting electrons are inhomogeneous, and the diffusion
of the superconducting and normal electrons together with
the Lorentz force should be compensated by a distribu-
tion of electric potential. In a recent paper [8], Lipavský,
Koláček, Morawetz and Brandt developed this theory.
They extended Ginzburg-Landau (GL) theory based on
a generalized two-fluid model, in order to solve the prob-
lem of electrostatic potential in superconductors where the
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distribution of order parameter is inhomogeneous. In this
paper [8], they also gave a detailed review to the past
works on the electrostatic potential distribution in super-
conductors. The experimental method to detect the elec-
trostatic potential in superconductors has been discussed
in some papers [9–11]. Yampolskii et al. [11] also discussed
the electric potential distribution in mesoscopic supercon-
ductors.

In the present paper, we will derive a new method
based on the microscopic theory of superconductivity to
deal with the electrostatic potential in superconductors
where the distribution of order parameter is inhomoge-
neous. This method is to make an approximation to the
Bogoliubov-de Gennes(BG) self-consistent theory of su-
perconductors [12], which is similar to the Thomas-Fermi
(TF) method used in quantum mechanics, and we have
used the results of GL theory in the discussion. As is well
known, BG self-consistent theory is equivalent to Gorkov’s
microscopic theory of Green’s functions [13]. Deriving GL
theory from Green’s functions is also equivalent to deriv-
ing from BG theory [14,15]. In this paper, we will firstly
give a brief description to BG theory using the treatment
of de Gennes [12]. Then we discuss the superconductors
where the distribution of order parameter is inhomoge-
neous and introduce a local chemical potential using a
TF-like approximation and the results of GL theory. We
derive the expression of electrostatic potential distribu-
tion based on the principle that the chemical potential
in different parts of the superconductor should be identi-
cal. Then we reconsider the problem of an isolated vortex
in type-II superconductors and discuss the distribution
of electrostatic potential and electric charge around the
vortex core. Finally we will discuss the correction to GL
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theory when considering the electrostatic potential distri-
bution.

2 BG self-consistent theory

BG theory is actually the generalization of Hartree-Fock
self-consistent theory for superconductors. In BG theory,
the problem of superconductor with magnetic field be-
comes a problem of deriving self-consistent solution to the
eigenfunctions. For a s-wave superconductor, the Hamil-
tonian in BG theory may be written as

HBG =
[

Hn + δU − µs ∆
∆∗ −[H ∗

n + δU − µs]

]
. (1)

Here Hn is the self-consistent Hamiltonian of the charge
carrier in normal state

Hn =
1

2m

(
p − e

c
A
)2

+ Un (2)

where A is the vector potential of the magnetic field. Un

is self-consistent field of the charge carrier, including the
field of crystal lattice and the interaction between charge
carriers. δU is the change of the self-consistent potential
from normal state to superconducting state, and µs is the
chemical potential of the system in superconducting state.
BG equation is written as

HBG

[
uk

vk

]
= Ek

[
uk

vk

]
. (3)

The density of charge carrier in superconducting state is
written as

ρs =
∑

k

[|uk(r)|2fk + |vk(r)|2(1 − fk)
]

(4)

where fk = 1/(eβEk + 1), β = 1/kBT and Ek ≥ 0. If the
spatial variation of the order parameter and the magnetic
field is slow, we may assume the gap operator ∆(r, r′) �
∆(r), and it is expressed as

∆(r) = V
∑

k

v∗k(r)uk(r)(1 − 2fk). (5)

The change of self-consistent potential δU is deter-
mined by

δU(r) =
∫
V (r, r′)[ρs(r′) − ρn(r′)]dr′. (6)

Chemical potential µs is determined by∫
(ρs − ρn)d3r = 0 (7)

where ρn is the density of charge carrier in normal state.
In principle, given µs, δU(r) and ∆(r), one has uk, vk

and Ek from (3). Then one can solve self-consistent µs,
U(r) and ∆(r) from equations (4–6), and one may repeat
the procedures to achieve higher precision, until ∆(r) and
δU(r) are fully consistent. But since the ∆(r) is nonzero
only in the neighborhood of Fermi surface, the change of
density of charge carrier is small. Thus we may introduce
some approximations to the BG theory.

3 TF-like approximation

We know that the density of state in the neighborhood of
the Fermi energy is not exactly symmetric to the Fermi
surface. Thus the chemical potential of the superconduct-
ing state µs is in fact different from the chemical potential
of normal state µn under same temperature and electron
density [16]. Now we derive this difference explicitly from
The BG theory. For a homogeneous system in the absence
of magnetic field, BG equation (3) could be solved as [12]

Ek =
√

(ε− µs)2 + |∆|2 (8a)

|uk|2 =
1
2

(
1 +

ε− µs

Ek

)
(8b)

|vk|2 =
1
2

(
1 − ε− µs

Ek

)
(8c)

where ε = Hn + δU is the energy of the charge carrier.
The density of charge carrier (4) may be re-written as

ρs =
∫ ∞

0

[|uk|2fk + |vk|2(1 − fk)]D(ε)dε (9)

where D(ε) is the density of energy state of electrons in
normal state. Apparently, for homogeneous systems in the
absence of magnetic field, the density of charge carrier is
always ρs = ρn and does not change spatially. From (9)
we may deduce the expression of chemical potential of
this homogeneous system in superconducting state as (see
Appendix A)

µs(∆,T ) � µn − 1
2
|∆|2 d ln DF

dε
R(∆,T ) (10)

where DF = D(µn) is the density of energy state at Fermi
surface for normal state. µn is the Fermi energy of normal
state at T = 0. R(∆,T ) is a parameter. When T = 0,
R(∆,T ) could be written as

R0(∆) � ln
2�ωD

|∆| − 1 (11)

where ωD is the Debye frequency. When T > 0, the pa-
rameter R will change, but (10) is still approximatively
tenable.

For superconductors where the order parameter is in-
homogeneous, the order parameter and the density of
charge carrier becomes spatial functions: ∆ = ∆(r) and
ρs = ρs(r). If the outer field is not very strong and is
restricted to part of the space, and if the spatial change
of the order parameter ∆(r) is slow, we may regard the
neighborhood of r as a small subsystem whose tempera-
ture is T , whose superconducting electron density is ρs(r)
and whose order parameter is |∆(r)|. Since the subsystem
is very small, both ρs(r) and |∆(r)| can be regarded as
constant in the subsystem. That is, the small subsystem
in the inhomogeneous superconductor can be regarded as
homogeneous. Thus we may use the result of (10) by defin-
ing a local chemical potential µL for this subsystem. In
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principle, the chemical potential should be strictly writ-
ten as µL = µL(∆,T, ρs(r)) and µn = µn(ρs(r)). But we
have pointed out that ρs is very close to ρn. So we may
take ρs � ρn and use the result of (10) to write the local
chemical potential as

µL(∆,T ) � µn − 1
2
|∆(r)|2 d ln DF

dε
R(∆(r), T ). (12)

For a place deep inside the superconductor where the mag-
netic field is almost zero, the local chemical potential µL

comes back to µs, now expressed as µ∞

µL(∆(r))|∞ → µ∞ (13)

where

µ∞ � µn − 1
2
|∆∞|2 d ln DF

dε
R∞. (14)

Here R∞ = R(∆∞, T ). ∆∞ is the order parameter deep
inside the superconductor. It equals to the order param-
eter of the superconductor in the absence of magnetic
field. The difference between the local chemical potential
at r and the chemical potential far away is denoted with
δµL = µL − µ∞ and is expressed as

δµL � −1
2
d ln DF

dε
[|∆|2R(∆) − |∆∞|2R∞]. (15)

When T = 0, we can use the expression (11) to calculate
δµL. When T > 0, the value of R will change, but (15)
is still valid. It should be noticed that the effect of charge
screening has been taken fully account into (15). A brief
discussion to this point is made in Appendix B.

Up to now we have only discussed the subsystems
whose order parameter is |∆(r)|. But the order parameter
of an inhomogeneous superconductor is normally complex,
and it also has nonzero spatial gradient which causes su-
perconducting current. Now we discuss these two parts
using GL theory. The GL free energy density of the su-
perconducting state relative to normal state is

F = −A|∆|2+
1
2
B|∆|4+C

∣∣∣∣
(
∇− i

2e
�c

A
)
∆

∣∣∣∣
2

+
h2

8π
(16)

where h denotes the magnetic field. For reduced BCS
model, when T ∼ Tc, A, B and C could be written as [12]

A � DF

(
1 − T

Tc

)
(17a)

B � DF
1
∆2

c

(17b)

C � 1
6
DF

(
�vF

∆c

)2

(17c)

where vF is the electron velocity at Fermi surface. When
T ∼ Tc and in the absence of a magnetic field, ∆c is
determined by

∆∞(T ) � ∆c

√
(1 − T/Tc). (18)

According to reduced BCS theory, we have ∆c � 3.2kBT .
According to the thermodynamic formulae [19], we know
that the change of chemical potential from normal to su-
perconducting state caused by the spatial gradient of order
parameter and the superfluid of electrons is determined by

µB(r) =
∂F

∂ρn
. (19)

Notice that A,B ∝ DF , i.e. A,B ∝ kF ∝ ρ
1/3
n , where

kF is the Fermi wave vector. And we can see that C ∝
DF v

2
F , which means C ∝ k3

F ∝ ρn. Hence when ρn →
∞, the items contains A and B respectively would vanish
during the derivation according to ρn, and only the part
containing C would play the main role in equation (19).
Thus we may write µB as

µB(r) � ∂C

∂ρn

∣∣∣∣
(
∇− i

2e
�c

A
)
∆

∣∣∣∣
2

. (20)

As we can see, µB contains the effect of both spatial gradi-
ent of the order parameter and the supercurrent. Accord-
ingly, the difference between the local chemical potential
for a subsystem in the neighborhood of r and the chemical
potential far away is expressed as

δµ(r) = δµL(r) + µB(r) (21)

and this difference should be compensated with an electro-
static potential relevant to r, in order to keep the chemical
potential identical in different parts of the whole system.
This electrostatic potential is determined by

ϕ = −1
q
δµ(r). (22)

Here q is the charge of the current carrier.
Now we have deduced the electrostatic potential ϕ,

which can be regarded as the first order approximation
of the δU . The method we have used is similar to the
Thomas-Fermi method solving many-body problems in
quantum mechanics. Or we may say that we have made
a TF approximation to BG self-consistent theory. As is
shown in Appendix B, the charge screening effect has been
taken into account by a step by step approximation with
respect to the small parameter l2cs/ξ

2, where lcs is the
charge screening length and ξ is the coherence length.

In principle, we should substitute the electric poten-
tial (22) back into BG equations (3) and do further cal-
culations in order to get self-consistency. But let us first
estimate the order of magnitude of δµ(r) and see whether
further calculation is necessary.

4 The estimate to the change of chemical
potential

To estimate the order of magnitude of δµ(r), we have to
make some further approximations. First we write δµ in
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an expanded form

δµ = −1
2
d ln DF

dε
[|∆|2R(∆,T ) − |∆∞|2R(∆∞, T )]

+
∂C

∂ρn

∣∣∣∣
(
∇− i

2e
�c

A
)
∆

∣∣∣∣
2

. (23)

Now we omit parameter T and write R(∆,T ) as R(∆),
write R(∆∞, T ) as R∞. And we denote δµL with δµ1,
which means the first part of (23)

δµ1 ≡ −1
2
d ln DF

dε
[|∆|2R(∆) − |∆∞|2R∞].

When T = 0, we have

|∆|2R(∆) = |∆|2
(

ln
2�ωD

|∆| − 1
)

= |∆|2
(

ln
2�ωD

|∆∞| + ln
|∆|
|∆∞| − 1

)

= |∆|2R∞ − |∆|2 ln
|∆|
|∆∞| .

So δµ1 is written as

δµ1 = −1
2
d ln DF

dε

[
(|∆|2 − |∆∞|2)R∞ + |∆|2 ln

|∆|
|∆∞|

]
.

When T = 0, R∞ is determined by (11). When T > 0, the
value of R∞ will change, but we can still use the expression
of (11) for rough estimation. Apparently, we can see that
0 < |∆|2 ln |∆|

|∆∞| < |∆∞|2 And when |∆| → 0 or |∆| →
|∆∞|, we have |∆|2 ln |∆|

|∆∞| → 0. On the other hand, we
also have 0 < |∆|2 < |∆∞|2. Thus we may estimate the
order of magnitude of δµ1 like

δµ1 ∼ 1
2
d ln DF

dε
|∆∞|2

(
ln

2�ωD

|∆∞| − 1
)
. (24)

When T > 0, the value of δµ1 will change, but it will
remain in similar order. So we may use (24) to estimate
the order of δµ1 as a rough approximation.

For reduced BCS model, we have [17]

ln
2�ωD

|∆∞| ∼
1

DF V
(25)

where V is the electron-photon interaction parameter. For
real material, 1/DF V ∼ (2−5) [17]. We can also estimate
that

d ln DF

dε
∼ C

EF
(26)

where EF is Fermi energy and C is a constant having
order of 1. Hence δµ1 has the order of |∆∞|2/EF .

The second part of (23) is µB. When using reduced
BCS theory and free electron gas model, we have

∂C

∂ρn
� �

2

4m
1
∆2

c

. (27)

Suppose we can write ∆ as ∆ = ∆r(x)eiθ(x), in which ∆r

is real, and substitute it into µB

δµB =
�

2

4m
1
∆2

c

∣∣∣∣
(
∇− i

2e
�c

A
)
∆

∣∣∣∣
2

=
�

2

4m
1
∆2

c

[
(∇∆r)2 +∆2

r

∣∣∣∣∇θ − 2e
�c

A
∣∣∣∣
2
]

= δµ2 + δµ3. (28)

Here δµ2 and δµ3 are defined as

δµ2 ≡ �
2

4m
1
∆2

c

(∇∆r)2 (29)

δµ3 ≡ �
2

4m
1
∆2

c

∆2
r

∣∣∣∣∇θ − 2e
�c

A
∣∣∣∣
2

. (30)

The spatial gradient of ∆(r) has the order of ξ−1.
Hence (∇∆r)2 ∼ ∆2

cξ
−2, where ξ is the coherent length.

∆2
r

∣∣∇θ − 2e
�cA

∣∣2 is the effect of superconducting current,
which was formally considered as Bernoulli effect that
originally suggested by London et al. [1–3]. We will prove
that this part has the same order of magnitude with
(∇∆r)2. Since mv2

F /2 ∼ EF and ξ−2 ∼ π2∆∞/(�vF )2,
δµ2 also has the order of |∆∞|2/EF .

Up to now we have shown that the change of chemical
potential from r to a place deep inside the superconductor
consists of three parts: δµ1, δµ2 and δµ3. The first part
δµ1 is determined by the change of the order parameter,
δµ1 ∝ |(∆∞|2 − |∆|2). The second part δµ2 is determined
by the spatial gradient of the mold of order parameter,
δµ2 ∝ (∇∆r)2. The third part δµ3 contains the spatial
gradient of the phase of the order parameter, representing
the effect of the change of supercurrent density, which was
formally regarded as Bernoulli effect. All three parts have
similar order of magnitude, and none of them should be
neglected.

The additional density of charge carrier ρad is deter-
mined by ρs = ρn + ρad. It can be written as

ρad = − 1
4πq

∇2ϕ. (31)

Since we have shown that δµ = δµ1 + δµ2 + δµ3 has the
order if |∆∞|2/EF , and the spatial gradient of ∆(r) has
the order of ξ−1, we may estimate the order of ρad as

ρad ∼ 1
4πξ2q

|∆∞|2
EF

. (32)

We know that |∆| 	 EF and EF ∼ 1 eV. Since normally
we have ρn ∼ 1022 in superconductors, we can see that
ρad 	 ρn. So ρn � ρs can be taken as a good approxima-
tion.

5 Electrostatic potential of an isolated vortex

Now we reconsider the problem of an isolated vortex in
a type-II superconductor using the result above. Taking
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cylindrical coordinate (r, θ, z) with zero point at the core
of the vortex, we may write the order parameter, vector
potential and magnetic field as

∆(r) = ∆∞f(r)eiθ (33a)
A = a(r)eθ (33b)
H = h(r)ez . (33c)

Here∆∞ is taken real. This problem has been well studied
in many books. We also give a brief discussion about the
problem of an isolated vortex in a type-II superconductor
in Appendix C. From Appendix C we have

f(r) � tanh(νr/ξ) (34a)

a(r) � �c

2eξ
1
r

[
1 − yK1(y/λ)

y0K1(y0/λ)

]
(34b)

H � Φ0

2πλ2
K0(y/λ) (34c)

where y =
√
y2
0 + r2. ν and y0 are constant. When κ
 1,

we have ν � 0.61, y0 � 1.63ξ. Substituting (33) and (34)
into δµ expressed by (23), we may write δµs as the sum
of three parts

δµs = δµv1 + δµv2 + δµv3 (35)

where

δµv1 = −1
2
d ln DF

dε
[|∆|2R(∆) − |∆∞|2R∞] (36a)

δµv2 =
�

2

4m
|∆|2
∆2

c

(
df

dr

)2

(36b)

δµv3 =
�

2

4m
|∆|2
∆2

c

f2(r)
[
1
r
− 2e

�c
a(r)

]2

. (36c)

Using the results of Section 4, we may roughly calculate
the order and the shape of the electrostatic potential and
the charge distribution. δµv1 can estimated as

δµv1 ∼ 1
2

C

EF
|∆∞|2

(
1

DF V
− 1
)

cosh−2

[
νr

ξ

]
(37)

δµv1 is nearly a constant when r ≤ ξ, and approaches
e−2νr/ξ when r 
 ξ.

δµv2 contains the spatial gradient of the module of
order parameter. It has the expression of

δµv2 � �
2

4m

(
1 − T

Tc

)
ν2

ξ2
cosh−4

(
νr

ξ

)
(38)

δµv2 equals to �
2ν2

4mξ2

(
1 − T

Tc

)
when r = 0, and it has the

same order with δµv1. δµv2 is nearly a constant when r ≤
ξ, and approaches e−4νr/ξ when r 
 ξ.

δµv3 contains the contribute of the supercurrent, and
this part was formally considered as Bernoulli effect. It is
written as

δµv3 � �
2

4m

(
1 − T

Tc

)
f2(r)
r2ξ2

yK1(y/λ)
y0K1(y0/λ)

(39)

Fig. 1. The variation of δµv1 (the middle curve), δµv2 (the
lower curve) and δµv3 (the upper curve) with r. Please notice
that the value of the three parts of δµ has been normalized.
The unit of the x coordinate is ξ = 1.

Fig. 2. The charge density around an isolated vortex line
where the charge carrier is hole. The unit of the coordinate
is ξ = 1. We can see that the column containing net charge
has a diameter of r ∼ ξ. A “shell” of positive charge can be
seen surrounding the negative column and will fade out when
r ∼ λ.

δµv3 equals to �
2

4mξ2

(
1 − T

Tc

)
when r = 0 and is nearly a

constant when r ≤ ξ. When ξ < r < λ, δµv3 ∝ r−2. When
r > λ, δµv3 approaches e−2r/λ.

The variation of the three parts of δµ discussed above
according to r is shown in Figure 1, and the charge density
caused by the additional electrostatic potential around an
isolated vortex line is shown in Figure 2, where the charge
of the current carrier is chosen as positive, q = |e|, denot-
ing that the charge carrier is hole. In Figure 1 we can see
that the spatial gradient of δµ is about to be maximum
when r ∼ ξ. As a result, the column containing net nega-
tive charge in Figure 2 has a diameter of r ∼ ξ. It is also
easily seen in Figure 1 that when ξ < r < λ, δµv3 is much
greater than δµv1 and δµv2, and will not fade out before
r ∼ λ. As a result, the positive “shell” around the nega-
tive column in Figure 2 has a diameter of r ∼ λ. This is
caused by the supercurrent around the vortex and is just
the so-called Bernoulli effect in London’s discussions [1].
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When κ
 1, the charge of the vortex per unit length
has the order of magnitude like

Q ∼ �
2

8mq
1
ξ2
. (40)

For the vortex pancake in YBCO whose length is d =
1.17 × 10−9 m and ξ = 1.91 nm, the charge Qd ∼ 10−3e.
This is similar to the results in the papers before [7].

6 The correction to GL equations

Finally we consider the correction that should be made
to GL equations. Since the additional electrostatic poten-
tial (22) is yielded, the energy density of the electric field
should be counted into the GL free energy density (16).
The additional free energy density is

Fad =
1
8π

|∇ϕ|2. (41)

We should deduce the corrected GL equations by taking
the variational derivative of total free energy

G =
∫

(F + Fad)d3r (42)

where F is the normal GL free energy density shown
in (16). We define ψ(r) as

ψ(r) =
∆(r)
|∆∞| (43)

and rewrite F in (16) as

F =
H2

c

4π

[
−|ψ|2 +

1
2
|ψ|4 + ξ2

∣∣∣∣
(
−i∇− 2e

�c
A
)
ψ

∣∣∣∣
2
]

+
h2

8π
(44)

whereHc is the critical field. In BCS theory, it is written as

Hc = −4πA2

B
=

�
2c2

8e2ξ2λ2
. (45)

So the normal GL equations are written as

H2
c

4π

[
−ψ + |ψ|2ψ + ξ2

(
−i∇− 2e

�c
A
)2

ψ

]
= 0 (46a)

j =
H2

c ξ
2

4π

[
2e
i�

(ψ∗∇ψ − ψ∇ψ∗) − 8e2

c�2
ψ∗ψA

]
(46b)

rewrite the electrostatic potential ϕ as

ϕ � P1(1 − ψ2) + P2

∣∣∣∣
(
−i∇− 2e

�c
A
)
ψ

∣∣∣∣
2

(47)

where constant P1 and P2 are defined as

P1 ≡ − 1
2q

C

EF
∆2

∞R (48)

P2 ≡ − �
2

4mq

(
1 − T

Tc

)
. (49)

The variation respect to ψ∗ is

δG =
∫
δFd3r +

1
8π

∫
δ|∇ϕ|2d3r

=
∫
δFd3r +

1
4π

∫
∇2ϕδϕd3r. (50)

The variation to the additional electrostatic potential is
therefore written as

δϕ =

[
−P1ψ + P2

(
−i∇− 2e

�c
A
)2

ψ

]
δψ∗. (51)

So (46a) becomes

H2
c

4π

[
−
(

1 +
P1∇2ϕ

H2
c

)
ψ + |ψ|2ψ

+ ξ2
(

1 +
P2∇2ϕ

ξ2H2
c

)(
−i∇− 2e

�c
A
)2

ψ

]
= 0. (52)

We know that ∇2ϕ ∼ ϕ/ξ2. With same argument (46b)
becomes

j =
H2

c ξ
2

4π

(
1 +

P2∇2ϕ

ξ2H2
c

)

×
[
2e
i�

(ψ∗∇ψ − ψ∇ψ∗) − 8e2

c�2
ψ∗ψA

]
. (53)

Apparently, we have both P1∇2ϕ
H2

c
	 1 and P2∇2ϕ

ξ2H2
c

	 1. It
is easily seen that the corrections made to the normal GL
equations (46) are relatively small. The form of the cor-
rected GL equations (52, 53) are very close to the original
GL equations (46a, 46b). Only some very small corrections
are added properly into corresponding items.

7 Conclusion

We have studied the problem of electrostatic potential dis-
tribution in superconductors where the order parameter is
inhomogeneous. Unlike previous works, our theory is not
based on a phenomenological theory, but is deduced from
the microscopic theory of superconductors. We have intro-
duced an approximation method to the BG self-consistent
theory, which is similar to the TF approximation normally
used in quantum mechanics in solving many-body prob-
lems. With this TF-like approximation, we brought out
the distribution of electrostatic potential, which can be
regarded as the first order approximation of the change
of self-consistent field δU in BG equations. The electro-
static potential consists of three parts: the difference of
absolute value of order parameter, the spatial gradient of
the module and of the phase of the order parameter. All
three parts have the similar order of magnitude and should
not be neglected. Using the electrostatic potential we de-
duced, we estimated the value of the corresponding charge
density of an isolated vortex in type-II superconductors,
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and the value is similar to the results in earlier papers.
Considering the additional free energy density of the elec-
trostatic field, corrections to the GL equations are made.
It is shown that the corrections to GL equations are rel-
atively small. And the structure of GL equations are not
changed, with all corrections added properly to the corre-
sponding items. So the electrostatic potential we derived
is a good approximation to the self-consistent solution of
BG equations.

Appendix A: The calculation of local chemical
potential

The density of charge carrier in superconducting state is
written as

ρs =
∫ ∞

0

[|uk|2fk + |vk|2(1 − fk)]D(ε)dε (A.1)

where fk = 1/(eβEk + 1). Substitute (8) into ρs, we have

ρs =
∫ ∞

0

1
2

[
1 − ε− µs

Ek
(1 − 2fk)

]
D(ε)dε (A.2)

where Ek =
√

(ε− µs)2 + |∆|2. Now we define

x ≡ ε− µs (A.3a)

F (x) ≡ 1
2

[
1 − x√

x2 + |∆|2 (1 − 2fk)

]
(A.3b)

G(x) ≡
∫ x

−∞
D(x+ µs)dx (A.3c)

and re-write ρs as

ρs =
∫ ∞

−µs

F (x)G′(x)dx

= −
∫ ∞

−µs

F ′(x)G(x)dx + F (x)G(x)
∣∣∣∣
∞

−µs

. (A.4)

Normally we can take µs 
 ∆, so F (x)G(x)|∞−µs
� 0.

According to reduced BCS theory, ∆(x) is nonzero only
when −�ωD ≤ x ≤ �ωD. Thus

ρs � −
∫

�ωD

−�ωD

F ′(x)G(x)dx. (A.5)

When T → 0, since fk → 0, F(x) has the simple form

F (x) =
1
2

(
1 − x√

x2 + |∆|2

)
(A.6)

and its differential quotient is

F ′(x) = −1
2

|∆|2
(x2 + |∆|2)3/2

. (A.7)

Expand G(x) at x = 0, take the first three items

G(x) = G(0) +G′(0)x+
1
2
G′′(0)x2 + · · · (A.8)

and bring it into ρs, we have

ρs � −
∫ �ωD

−�ωD

[
G(0) +G′(0)x+

1
2
G′′(0)x2

]
F ′(x)dx.

(A.9)
Normally we have �ωD 
 ∆, so the first item of (A.9) is
approximately G(0). Since F ′(x) is even, the second item
is 0. In the third item we have

G′′(0) =
dD(ε)
dε

∣∣∣∣
ε=µs

� dD(ε)
dε

∣∣∣∣
ε=µn

=
dDF

dε
(A.10)

where DF = D(µn). Hence ρs is expressed as

ρs � G(0) +
1
2
dDF

dε

∫
�ωD

−�ωD

F ′(x)x2dx

� G(0) − 1
2
dDF

dε
|∆|2

(
ln

2�ωD

|∆| − 1
)
. (A.11)

On the other hand, the density of charge carrier in normal
state at T = 0 is written as

ρn =
∫ µn

0

D(ε)dε = G(µn − µs)

= G(0) + DF (µn − µs). (A.12)

If we take ρn � ρs and compare the results above, we will
get

µs − µn � − 1
2DF

dDF

dε
|∆|2

(
ln

2�ωD

|∆| − 1
)

= −1
2
d ln DF

dε
|∆|2

(
ln

2�ωD

|∆| − 1
)
. (A.13)

When T > 0, the integrations can not be analytically
deduced. But we may use numerical method to finish the
integration, and get the similar results. The change of
chemical potential may be approximately written as

µs − µn � −1
2
d ln DF

dε
|∆|2R(∆,T ). (A.14)

When T → 0, Parameter R goes to

R → ln
2�ωD

|∆| − 1. (A.15)

When T > 0, the value of R will change, but it will have
the similar order of magnitude.
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Appendix B: Charge screening taken account
into the local chemical potential

For superconductors where the order parameter is homo-
geneous, ∆ = ∆0, the chemical potential is written as

µs(ρ, T,∆0) = µn(ρ, T ) + φs(ρ, T,∆0) (B.1)

where µn is the chemical potential of charge carrier in
normal state, and φs = µs − µn is the change of chemical
potential when the superconductor changes from normal
state to superconducting state. When the system is in-
homogeneous, we have ρ(r) = ρ + δρ(r) and ∆ = ∆(r).
For the small homogeneous subsystem we are discussing,
we omit parameter T and write the local chemical poten-
tial µL as

µL(ρ+ δρ(r), ∆(r)) = µn(ρ+ δρ(r))
+ φL(ρ+ δρ(r), |∆(r)|) (B.2)

where φL is the corresponding change of chemical poten-
tial of the local system. Since the chemical potential of
the whole system must be identical, we introduce V (r)
being electrostatic potential between the local subsystem
and the subsystems deep inside and write

µL(ρ+ δρ(r)) + φL(ρ+ δρ(r), |∆(r)|) + qV (r) =
µn(ρ) + φs(ρ,∆0) (B.3)

where q is the charge of the carrier. On the other hand, ac-
cording to the approximation and discussion in Section 3,
one may write

µL(ρ+ δρ(r)) − µn(ρ) �
(
∂µn

∂ρ

)
δρ(r) (B.4)

φL(ρ+ δρ(r), |∆(r)|) − φs(ρ,∆0) � δφ(ρ, |∆(r)|, ∆0)
(B.5)

where (B.5) is the formal expression of equation (15) in
Section 3. Thus (B.3) may be written as

qV (r) +
(
∂µn

∂ρ

)
δρ(r) + δφ(ρ, |∆(r)|, ∆0) = 0 (B.6)

or

δρ(r) = − 1
(∂µn/∂ρ)

(qV (r) + δφ(ρ, |∆(r)|, ∆0)). (B.7)

and, in principle, the charge distribution in superconduc-
tors could be written as

Q(r) = qδρ(r). (B.8)

According to Poisson equation, V (r) is determined by

∇2V (r) = −4πQ(r)

=
q2

(∂µn/∂ρ)
(V (r) +

1
q
δφ(ρ, |∆(r)|, ∆0)). (B.9)

Notice that
q2

(∂µn/∂ρ)
=

1
l2cs

(B.10)

and lcs is just the charge screening length that generally
discussed in solid state physics. Equation (B.9) is rewrit-
ten as

l2cs∇2V (r) = V (r) +
1
q
δφ(ρ, |∆(r)|, ∆0). (B.11)

The spatial gradient of V (r) has the order of ξ−1 or λ−1.
Thus l2cs∇2V (r) ∼ l2csV (r)/ξ2. It is easily seen that lcs 	
ξ, i.e. l2cs/ξ

2 	 1. So we may expand V (r) as

V (r) = V (0)(r) + V (1)(r) + V (2)(r) + · · · (B.12)

and compare the corresponding items and get

V (0)(r) +
1
q
δφ(ρ, |∆(r)|, ∆0) = 0 (B.13)

l2cs∇2V (0)(r) = V (1)(r) (B.14)

l2cs∇2V (1)(r) = V (2)(r) (B.15)
· · · · · ·

We may rewrite Q(r) in equation (B.8) as

Q(r) = − 1
4π

1
l2cs

(V (0)(r) +
1
q
δφ(ρ, |∆(r)|, ∆0)

+ V (1)(r) + · · · ).
Now we bring the above results into this equation and
get the part of charge distribution that is caused by the
module change of order parameter

Q(r) = − 1
4πl2cs

(V (1)(r) + · · · )

� − 1
4πl2cs

l2cs

−1
q
∇2δφ(ρ, |∆(r)|, ∆0)

= − 1
4πq

∇2δφ(ρ, |∆(r)|, ∆0). (B.16)

This is the formal expression of the results in Section 3.
It is easily seen from the above discussion that the charge
screening has been fully taken account into the results. In
fact, the charge screening is deduced from the mean field
theory. Thus when we use a TF-like approximation shown
in Section 3, the charge screening will be more precisely
considered.

Appendix C: Order parameter and magnetic
field near the vortex core

The order parameter and the magnetic field around an
isolated vortex in type-II superconductors has been well
studied in many books. But in our case, not only the mag-
nitude of the order parameter and the magnetic field, but
also their first and second order spatial gradient near the
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vortex core are of importance to the distribution of net
charge carrier caused by the additional electrostatic field.
Now we give a detailed discussion to this problem. GL
equations are written as

αψ + β|ψ|2ψ − �
2

2m

(
−i∇− 2e

�c
A
)2

ψ = 0 (C.1a)

j =
2e�
m

(ψ∗∇ψ − ψ∇ψ∗) − 4e2

mc
ψ∗ψA (C.1b)

take ψ = ∆(ρ, θ, z), substitute (33) into (C.1), use ∇×H =
4π
c j and −α/β = |ψ∞|2, GL equations become

d2f

dr2
+

1
r

df

dr
+
(
v − 1

r

)2

f + f − f3 = 0 (C.2a)

d2v

dr2
+

1
r

dv

dr
+

1
κ2

(
v − 1

r

)
f2 − v

r2
= 0 (C.2b)

where r = ρ/ξ, a = Φ
2πξv, and λ/ξ = κ. Φ0 = hc

2|e| is the
flux quantum. The boundary condition is

f → 0, v → 0, (r → 0) (C.3a)

f → 1, v → 1
r
, (r → ∞). (C.3b)

Thus we may expand f(r) and v(r) near r = 0 as

f(r) = f1r
1 + f2r

2 + f3r
3 + · · · (C.4a)

v(r) = v1r
1 + v2r

2 + v3r
3 + · · · (C.4b)

Substitute (C.4) into (C.3) and compare the coefficients
of the items having the same order of r, we have

f1, v1 = c (C.5a)

f2 = v2 = 0 (C.5b)

where c is random constant, and

f3 = −1
8
(1 − 2v1)f1 (C.5c)

v3 =
1

8κ2
f2
1 . (C.5d)

Now we choose the form of f(r) and v(r). It is recom-
mended by Tinkham [18] that

f(r) � tanh(νr) (C.6)

is a good approximation to the solution of GL equation,
where ν is a constant having order of 1, and should prin-
cipally be decided by the variation of free energy. When
ρ
 ξ, the solution of London equation is a good approx-
imation to the magnetic field

H =
Φ0

2πλ2
K0(ρ/λ) (C.7)

where K0 is the zero order modified Bessel function of
second kind. Take the gauge a(r) = 1

r

∫ r

0 h(r)rdr, then
v(r) is

v(r) =
1
r
−K1

( r
κ

)
(C.8)

where K1 is the first order modified Bessel function of sec-
ond kind. But the magnetic field (C.7) is divergent when
r → 0, so the expression of (C.8) should be modified near
the core of the vortex.

Introduce x =
√
r2 + x2

0

x→ x0, (r → 0) (C.9a)

x→ r, (r → ∞) (C.9b)

where x0 is an undetermined constant that should have
the order of 1. If we replace r with x, H(x) has the bound-
ary conditions that meet the physical need

H(x) → H(x0), (r → 0) (C.10a)

H(x) → H(r), (r → ∞). (C.10b)

Use the gauge and do the integration, v(r) becomes

v(r) =
1
r

[
1 − xK1(x/κ)

x0K1(x0/κ)

]
. (C.11)

Now we choose (C.6) and (C.11) as heuristic solutions and
substitute them into (C.4). We find

f2 = 0, v2 = 0 (C.12)

which means (C.6) and (C.11) are suitable approximate
solutions to GL equations. We also have

f1 = ν (C.13a)

f3 = −ν3/3 (C.13b)

and

v1 =
1

2x0κ

K0(x0/κ)
K1(x0/κ)

(C.13c)

v3 = − 1
8κ2x2

0

. (C.13d)

Use (C.5) and assume κ
 1, we solute

ν �
√

3/8 � 0.61 (C.14)

x0 �
√

8/3 � 1.63. (C.15)

We rewrite the results in coordinate (r, θ, z) as

f(r) = tanh(νr/ξ) (C.16a)

a(r) =
�c

2eξ
1
r

[
1 − yK1(y/λ)

y0K1(y0/λ)

]
(C.16b)

H =
Φ0

2πλ2
K0(y/λ) (C.16c)

where y =
√
y2
0 + r2, and y0 = x0ξ.
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